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Quantization of the transverse electron motion in high-quality superconducting metallic nanowires and
nanofilms results in the formation of well-distinguished single-electron subbands. They shift in energy with
changing thickness, which is known to cause quantum-size superconducting oscillations. The formation of
multiple subbands results in a multigap structure induced by the interplay between quantum confinement and
Andreev mechanism. We investigate multisubband superconductivity in a hollow nanocylinder by numerically
solving the Bogoliubov-de Gennes equations. When changing the inner radius and thickness of the hollow
nanocylinder, we find a crossover from an irregular pattern of quantum-size superconducting oscillations,
typical of nanowires, to an almost regular regime, specific for superconducting nanofilms. At this crossover the
multigap structure becomes degenerate. The ratio of the critical temperature to the energy gap increases and
approaches its bulk value while being reduced by 20–30 % due to Andreev-type states driven by quantum
confinement in the irregular regime.
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I. INTRODUCTION

High-quality metallic superconducting nanofilms and
nanowires are now available due to recent advances in nano-
fabrication technologies. In particular, ultrathin single-
crystalline flat islands of Pb can now be routinely fabricated
with atomically uniform thickness down to few monolayers
and lateral dimensions from 100–200 nm to 1–2 �m.1–9

Such nanofilms are nearly impurity free �see, e.g., Ref. 7� but
grown on a disordered wetting layer �about a few monolay-
ers of Pb� on silicon substrate�. This disordered interface
controls the electron mean-free path that is approximately
twice the nanofilm thickness �see, e.g., Ref. 3�. As a result,
clear signatures of the quantized transverse electron spec-
trum �quantum-well states� are observed in tunneling
data1,3,6,9� and, so, the conduction band splits up into a series
of subbands. The single-crystalline nanofilms are low resis-
tive and show no significant suppression of superconductiv-
ity due to fluctuations or disorder �see discussion in Ref. 3�.
It was recently found9 that superconductivity survives even
in Pb nanofilms with an extremely small thickness of 2
monolayers.

Similar steadiness of superconductivity is observed in
high-quality nanowires, both single crystalline �Sn, see Refs.
10–12� and made of strongly coupled grains �Al, Refs.
13–15�. Here signatures of the superconducting state are
found for diameters down to 5–10 nm.14,15 The electron
mean-free path is estimated to be of about the nanowire
thickness �see, e.g., Refs. 15 and 16�. Thus, the formation of
distinguished single-electron subbands can be expected due
to the transverse quantization.

Superconductivity in the presence of multiple bands can
in general lead to a wealth of unusual superconducting phe-
nomena, such as, e.g., Leggett’s collective mode,17 Tanaka’s
soliton,18–20 and fractional flux.21,22 The reason is that the
pair condensate can have different phases in different bands,
which brings new degrees of freedom. The multisubband
structure induced by quantum confinement results in addi-
tional important possibilities. Formed due to the transverse

quantization, subbands move in energy when changing the
nanowire/nanofilm thickness. In particular, this leads to
quantum-size oscillations accompanied by significant en-
hancements each time when the bottom of a new single-
electron subband passes through the Fermi surface, i.e., the
quantum-size superconducting resonance.23 Recently,
quantum-size oscillations of the critical superconducting
temperature Tc and critical magnetic field Hc2 have been ob-
served in Pb nanofilms.1,4,9 Furthermore, the results of a nu-
merical self-consistent investigation of the Bogoliubov-de
Gennes �BdG� equations in Ref. 24 shows that the supercon-
ducting resonances are responsible for a systematic shift-up
of Tc observed in aluminum and tin nanowires with a de-
crease in the cross section.10,11,13–15 Other interesting effects
can be expected in high-quality nanofilms and nanowires due
to the formation of the multisubband structure, e.g.,
Andreev-type states induced by quantum confinement25 and
a cascade character of the superconductor-to-normal transi-
tion driven by a magnetic field/supercurrent.26,27 All this
makes it possible to expect that the multisubband structure
realized due to quantum confinement can open new pros-
pects of tailoring superconducting properties by changing the
main geometrical parameters of nanoscale superconductors.

Despite recent progress, many details of the supercon-
ducting state in the presence of the restricted dimensionality
and multiple subbands remain unexplored. In particular, this
concerns superconducting systems with an annular confining
geometry, e.g., a hollow nanocylinder or nanoring, represent-
ing a promising choice for future superconducting nanode-
vices �see, e.g., recent papers on nanorings28–31�. In the
present paper we show that the superconducting condensate,
energy gap, and critical temperature of a hollow metallic
nanocylinder �with inner radius R and thickness d� can be
strongly modified by changing R and d. The formation of
multiple subbands results in quantum-size superconducting
oscillations and in a multigap structure driven by the inter-
play of quantum confinement with Andreev mechanism.
Quantum-size oscillations of the basic superconducting
quantities as function of d exhibit a qualitative change from
an irregular regime at small inner radii to almost regular
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oscillations for large R. At this crossover the multigap struc-
ture becomes degenerate. The ratio of the critical tempera-
ture to the energy gap increases and approaches its bulk
value while being reduced by 20–30 % due to Andreev-type
states in the irregular regime. Our investigation is based on a
numerical self-consistent solution of the BdG equations in
the clean limit.

The paper is organized as follows. In Sec. II, we outline
the formalism of the BdG equations and discuss how to con-
struct Anderson’s approximate solution to the BdG equations
for a hollow metallic nanocylinder. In Sec. III we demon-
strate that results of a numerical solution of the BdG equa-
tions are in very good agreement with those of Anderson’s
approximation. This allows us to abandon time-consuming
numerical study of the BdG equations in favor of solving the
BCS-type equation. Then, the basic superconducting proper-
ties, i.e., the order parameter, energy gap, and critical tem-
perature, are investigated as function of the main geometrical
parameters R and d.

II. FORMALISM

A. Bogoliubov-de Gennes equations

In the absence of a magnetic field the BdG equations can
be written in the form32

Enun�r� = Ĥeun�r� + ��r�vn�r� , �1a�

Envn�r� = ��r�un�r� − Ĥevn�r� , �1b�

where ��r� is the superconducting order parameter �taken as
real�, En is the quasiparticle spectrum with n the set of the
relevant quantum numbers, un�r� and vn�r� are the particle-

like and holelike wave functions, and Ĥe=− �2

2me
�2−EF, with

me the electron band mass and EF the Fermi energy in the
normal state.

The BdG equations have to be solved in a self-consistent
manner, together with the self-consistency relation given by

��r� = g�
n

un�r�vn
��r��1 – 2fn� , �2�

where fn= f�En� is the Fermi function and g�0 is the cou-
pling constant controlling the Cooper pairing. The particle-
like and holelike amplitudes in Eq. �2� obey the normaliza-
tion condition

� d3r��un�r��2 + �vn�r��2� = 1. �3�

The sum in Eq. �2� is over the electron states with positive
quasiparticle energy. In addition, to remedy the ultraviolet
divergence in the self-consistency relation, we need to in-
voke a cutoff resulting in taking only states with single-
electron energy �n within the Debye window around the
Fermi level, i.e., ��n���	D with

�n =� d3r�un
��r�Ĥeun�r� + vn

��r�Ĥevn�r�� . �4�

Due to the grand-canonical character of the BdG formalism,
the chemical potential �equal to EF� enters the basic equa-

tions and, so, the single-electron energy in Eq. �4� is mea-
sured from the Fermi level. For a given mean electron den-
sity ne, EF is determined from

ne =
2

V
�

n
� d3r��un�r��2fn + �vn�r��2�1 − fn�� �5�

with V=
d�d+2R�L the volume of a hollow nanocylinder
with length L, where L→�.

For the chosen geometry, the superconducting order pa-
rameter depends only on � �� ,
 ,z are the cylindrical coor-
dinates�, i.e., ��r�=����. It implies that we restrict ourselves
to the case of zero net angular momentum of the condensate
�no vortex� and zero net momentum along the z axis �no
longitudinal supercurrent�. States with a finite net angular
momentum have a much higher kinetic energy in the case of
interest. The particlelike and holelike amplitudes can be rep-
resented as

un�r� = un���
eım


�2


eıkz

�L
, vn�r� = vn���

eim


�2


eikz

�L
, �6�

where n= 	j ,m ,k
, j is the radial quantum number control-
ling the number of zeros of un��� and vn��� for R���R
+d, m is the azimuthal quantum number, and k is the wave
vector of the quasifree electron motion parallel to the nano-
cylinder. Due to transverse quantum confinement

un�r���=R = un�r���=R+d = 0, �7a�

vn�r���=R = vn�r���=R+d = 0, �7b�

while periodic boundary conditions are used in the longitu-
dinal and azimuthal directions.

For a numerical solution of the BdG equations, we expand
the particlelike and holelike radial wave functions ujmk���
and v jmk��� in terms of the single-electron radial wave func-
tions � jm���, i.e.,

ujmk��� = �
j�

Ujmk,j�� j�m��� , �8a�

v jmk��� = �
j�

Vjmk,j�� j�m��� . �8b�

We chose ujmk��� and v jmk��� real and, so, the expansion
coefficients Ujmk,j� and Vjmk,j� are real, as well. Then, insert-
ing Eq. �8� into Eq. �1�, the expansion coefficients Ujmk,j� and
Vjmk,j� can be calculated together with Ejmk by means of di-
agonalizing the relevant matrix. Iterations are invoked to re-
alize a self-consistent solution. The wave function � jm��� is
given by the equation

�−
1

�

�

��
�

�

��
+

m2

�2 �� jm��� = � jm
2 � jm��� , �9�

where �2� jm
2 / �2me� stands for the contribution of the radial

and azimuthal motion to the single-electron energy. Due to
the quantum-confinement boundary conditions given by Eq.
�7�, one should set
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� jm�����=R = � jm�����=R+d = 0. �10�

From Eqs. �9� and �10� it follows that � jm��� can be written
as

� jm��� =
1

�M
�Ym�� jmR�Jm�� jm�� − Jm�� jmR�Ym�� jm��� ,

�11�

where Jm�x� and Ym�x� are the Bessel functions of the first
and second kind of mth order and the normalization constant
M is given by

M =
�

2
�Ym�� jmR�Jm+1�� jm�� − Jm�� jmR�Ym+1�� jm�����=R

�=R+d.

�12�

The transverse single-electron energy � jm=� jm�R ,d� is a so-
lution of


 Jm�� jmR� Ym�� jmR�
Jm�� jm�R + d�� Ym�� jm�R + d��


 = 0, �13�

which follows from Eq. �10�. Notice that generally, � jm has a
complicated dependence on the geometrical parameters R
and d. However, in most cases � jm is controlled by d: for
R→0 we get � jm�1 /d, and a similar dependence is found
for R→� or d→0. This can also be seen from the Heisen-
berg uncertainty principle because � jm can be interpreted as
an average modulus of the transverse electron momentum.

Below we consider material parameters typical of alumi-
num: �	D=32.31 meV; gN�0�=0.18, with N�0� the bulk
density of states at the Fermi level. Notice that the BdG
equations given by Eq. �1� are written in the parabolic band
approximation. This implies working with an effective Fermi
level �for more details, see Ref. 33�. For aluminum EF
=0.9 eV, which was obtained through a good agreement
with the experimental data in Ref. 24. With decreasing thick-
ness, as results from Eq. �5�, EF systematically shifts up from
0.9 eV due to quantum-size effects. Such a shift can be ap-
preciable �about 20%� for d�1–2 nm �EF is almost insen-
sitive to R�. In addition, each time when a new single-
electron subband passes through the Fermi surface, EF
exhibits a kink similar to the dependence of EF on the radius
of a cylindrical nanowire.33 For the chosen parameters the
bulk BCS coherence length and energy gap are �0
=1.5 �m�R ,d and �bulk=0.25 meV, respectively. The par-
ticular choice of Al does not influence our conclusions. For
instance, quantum-size oscillations in a Sn hollow nanocyl-
inder will also be present but with an amplitude that is a
factor of 2 smaller. In addition, by the same reason, we do
not address any issue concerning a thickness-dependent
change in the electron-phonon coupling. Its increase due to
the surface softening of the phonon spectrum34 or a possible
substrate-induced decrease1,8 can result in quantitative ef-
fects but do not alter the qualitative picture.

B. Anderson’s solution

When the Cooper pairing between electrons from differ-
ent single-electron subbands is insignificant we can invoke

Anderson’s approximate solution to the BdG equations.35 A
significant advantage of such an approximation is its semi-
analytical character, which makes it possible to reduce the
BdG equations to a BCS-type self-consistent equation whose
numerical solution is much less time consuming.

Anderson’s solution means that ujmk��� and v jmk��� are
taken to be proportional to � jm��� given by Eq. �11�, i.e., the
coefficients of the expansion in Eq. �8� are assumed to be of
the form26

Ujmk,j� = U jmk� j j�, Vjmk = V jmk� j j� �14�

with � j j� the discrete delta function. In this case the single-
electron energy reads

� jmk =
�2

2me
�� jm

2 + k2� − EF. �15�

Inserting Eq. �14� into Eq. �1� and, then, multiplying the
resulting expressions by � jm���, one can make a straightfor-
ward integration, which yields

Ejmk = �� jmk
2 + � jm

2 �16�

and

UjmkVjmk =
� jm

2�� jmk
2 + � jm

2
�17�

with � jm given by

� jm = �
R

R+d

d��� jm�������� jm��� . �18�

Making use of Eq. �2� together with Eqs. �14� and �17�, one
obtains the following BCS-type self-consistent equation,

� j�m� = − �
jmk

Jj�m�,jm
� jm

2Ejmk
�1 − 2f�Ejmk�� �19�

with the interaction matrix of the form

Jj�m�,jm = −
g

2
L
�

R

R+d

d��� j�m�
2 ���� jm

2 ��� . �20�

As mentioned above, Eq. �14� is a good approximation
when there is no significant pairing between electrons from
different subbands �i.e., nondegenerating subbands with dif-
ferent j and �m��. This is correct when the intersubband en-
ergy spacing �sub is compatible with or larger than the Debye
energy �	D: in such a case we have a negligible probability
to pick up two single-electron states in the Debye window,
i.e., �� jmk���	D, with different transverse energies and op-
posite longitudinal momenta. The above energy spacing can
be taken as �sub� �2

2me
�� j+1,m

2 −� jm
2 �. According to the remark

about the dependence of � jm on R and d after Eq. �13�, one
can approximate �sub as �sub� �2

2me


2

d2 , which is the intersub-
band energy spacing for nanofilms. Using such a simplifica-
tion, one obtains that Anderson’s approximation given by Eq.
�14� is good enough when
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d � 
� �

2me	D
. �21�

With typical metallic values �	D�10–30 meV, it follows
from Eq. �21� that d�4–6 nm. In Sec. III we check this
expectation through a numerical analysis. Note that Eq. �21�
is a necessary but not a sufficient condition for the accuracy
of Anderson’s approximation, Eq. �14�. It can be poor when
time-reversal symmetry is broken, e.g., in the presence of a
magnetic field. In this case the orientation of a magnetic field
is of importance. For instance, if it is parallel to the nanocyl-
inder, one can still obtain quite accurate results with Eq. �14�.
This is because the single-electron wave functions are not
very sensitive to such a magnetic field �they are the same in
linear order in the vector potential A, see Ref. 26�.

III. RESULTS AND DISCUSSION

A. Accuracy of Anderson’s solution

In Fig. 1 the zero-temperature order parameter is plotted
versus � as calculated from a numerical procedure based on
Eq. �8� �solid curve� and Anderson’s approximation �open
squares�. Two particular sets of R and d are chosen: for R
=7 nm we subsequently consider �a� d=3.17 nm and �b� d
=3.76 nm. Each set represents a superconducting resonance
and so ���� is enhanced as compared to the bulk zero-
temperature gap �bulk=0.25 meV. As seen, both solutions
give practically the same results �differences are found to be
less than 0.1%�. For R=7 nm the centrifugal term in Eq. �9�
almost does not change with m on the energy scale con-
trolled by �	D, i.e., �2

2me

1
�2 �

�2

2me

1
R2 �1 meV��	D. So, the

single-electron states with different azimuthal quantum num-
bers are nearly degenerate. In particular, for R=7 nm and
d=3.17 nm the lower edges of the single-electron subbands
with j=4 and �m�=0–13 are located in the Debye window.
This bundle of subbands makes major contribution to ����
and other basic superconducting characteristics at this reso-
nant point due to an enhanced density of states. At d
=3.76 nm the bottoms of the subbands with j=5 and �m�
=0–14 are positioned in the vicinity of EF, which results in
the resonance illustrated by Fig. 1�b�. The number of local
maxima of ���� is equal to j+1 and, so, increases by one

when passing from panel �a� to panel �b�. The contribution of
a single-electron subband to the order parameter is given by
�kujmk���v jmk

� ����1–2f jmk��� jm
2 ����kUjmkVjmk

� �1–2f jmk�,
which is an oscillating function of � with j+1 local maxima.
Note that j is the number of nodes of � jm��� between �=R
and �=R+d so that � jm

2 ��� has j+1 local maxima. Therefore,
when a superconducting resonance is governed by a bundle
of nearly degenerate subbands with the same radial quantum
number j, their input results in almost regular oscillations of
���� as illustrated in Fig. 1. We remark that there are also
superconducting resonances controlled by the subbands with
different radial quantum numbers. In addition, when R→0
there are many examples of superconducting resonances con-
trolled by simply one or two subbands. In such cases the
order-parameter profile does not show regular oscillations.
Its spatial distribution is very nonuniform and close to that of
the pair condensate in a cylindrical nanowire �see, e.g., Ref.
33�. Any changes in the profile of the order parameter and its
spatially averaged value do not have any effect on the accu-
racy of Anderson’s solution: our numerical investigations for
R=0–15 nm and d=0–10 nm shows negligible deviations
�within 0.1–0.3 %� of the results of Eq. �14� from the full
BdG as data as based on the procedure of Eq. �8�.

Thus, to abandon time-consuming numerical investiga-
tions that are based on the expansion given by Eq. �8�, we
will use Anderson’s recipe of an approximate semianalytical
solution to the BdG equations. As discussed above, correc-
tions to this approximation are insignificant for R
=0–15 nm and d=0–10 nm. For larger values of d one can
expect more pronounced deviations of Anderson’s solution.36

B. Quantum-size oscillations

Quantization of the transverse electron motion results in
superconducting quantum-size oscillations, i.e., oscillations
of the basic superconducting quantities when changing in the
geometrical parameters of the sample. Figure 2 shows how
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FIG. 1. �Color online� The order parameter ���� �at T=0� as
calculated from the full BdG equations �solid curve� and from
Anderson’s approximation �open squares�: �a� R=7 nm and d
=3.17 nm; and �b� R=7 nm and d=3.76 nm.
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pattern of quantum-size oscillations: spatially averaged order pa-

rameter �̄ as function of d for inner radii R=1, 2, 8, and 15 nm.
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the spatially averaged superconducting order parameter �̄,
i.e.,

�̄ =
2

d�2R + d��R

R+d

d������ , �22�

for different values of R at T=0 �open squares�. The same
result for a superconducting nanofilm is shown by the solid
curve. Panel �a� illustrates such thickness-dependent varia-
tions for R=1.0 nm. As seen, the two sets of numerical re-
sults differ significantly from one another. It is known23,37

that the thickness-dependent resonant enhancements in su-
perconducting nanofilms appear almost regularly with period
�d=�F /2. For small d this period systematically decreases
by about a few percent due to the shift-up of EF when de-
creasing d. The reason for such a regular appearance is that
the single-electron spectrum is proportional to �2 /d2 with �
the relevant quantum number controlling the transverse elec-
tron motion in nanofilms. This picture is different for nano-
wires. Here the quantum-size oscillations of superconducting
properties are irregular.24 The difference in width between
two neighboring resonant enhancements strongly fluctuates
along with their magnitudes. Note that the hollow supercon-
ducting nanocylinder for R=1.0 nm and d=1–4 nm exhib-

its rather nanowirelike irregular oscillations of �̄ that are

superimposed on top of the oscillations of �̄ in a correspond-
ing nanofilm. From Fig. 2 we notice that with increasing R,

the quantum-size oscillations in �̄ of a hollow nanocylinder
approach more closely those of the corresponding nanofilm.
However, the resonant enhancements over the bulk zero-
temperature energy gap �bulk=0.25 nm are still by a factor
of two larger for the hollow nanocylinder. The centrifugal
term �2

2me

m2

�2 in Eq. �9� is still of importance here: for �=R we

have �2

2me

1
R2 �9.52 meV, which is not negligible as compared

to the Debye energy �	D=32.31 meV. Therefore, the
single-electron subbands with different �m� produce well dis-

tinguished resonant enhancements of �̄ and this is the reason

for the irregular variations in �̄ shown for the hollow nano-
cylinder in Figs. 2�a� and 2�b�. For R�7–9 nm the centrifu-
gal term in Eq. �9� plays a decreasing role and the single-
electron subbands with different �m� become almost
degenerate. This results in the formation of bundles of sub-
bands with the same radial quantum number j and different
�m�. When a bottom of such a bundle comes into the Debye
window a superconducting resonance appears. While in-
creasing R, the sequence of these resonances exhibits a more
regular pattern and, finally, we arrive at the nanofilm regime
of the quantum-size oscillations. As seen from Figs. 2�c� and
2�d�, this regime is already well approached at R=8 and 10
nm. However, the deviations are still about 20% in panel �c�
and are reduced to about 10% in �d�. Thus, changing the
geometrical parameters R and d results in a qualitatively dif-
ferent design of the single-electron subbands. The irregular
distribution of the transverse electron levels at small R leads

to irregular quantum-size oscillations of �̄ �and other basic
superconducting quantities� with d �irregular regime�. For
sufficiently large R the formation of bundles of the subbands

with the same radial quantum number j but different m
makes the quantum-size oscillations regular, yielding almost
equidistant superconducting enhancements �regular regime�
at dj =1.09 nm, 1.79 nm, 2.42 nm, 3.1 nm, and 3.75 nm for
j=1–5, respectively. The reason for the observed crossover
from the irregular pattern to the regular regime is the inter-
play of quantum confinement and sample geometry.

Figure 3 adds more information to the discussion of the
previous paragraph. Here the radial profiles of the order pa-
rameter ���� are plotted for a series of the superconducting
resonances. Inner radii are taken the same as in Fig. 2. Thick-
nesses are chosen so that to take the most profound resonant
enhancement in the vicinity of d=dj for j=1–5. �the con-
crete values of d are given in Fig. 3�. When comparing these
profiles with the spatial distribution of the pair condensate in
aluminum nanofilms at d=dj,

37 one can find pronounced dif-
ferences for the irregular regime illustrated in panels �a� and
�b�. First of all, enhancements of ���� for the nanocylinder
are more significant, which can also be seen from Figs. 2�a�
and 2�b�. Second, nanofilms are specified by the symmetric
order-parameter distribution, i.e., ���� ��=R+x=���� ��=R+d−x.
Such a symmetry does not generally hold for the hollow
nanocylinder. This is clearly seen in panels �a� and �b�. As
for Figs. 3�c� and 3�d�, we arrive at the regular regime and
there are no significant deviations from the filmlike spatial
distribution of the superconducting condensate. As already
mentioned in Sec. III A, here the number of local maxima of
���� is equal to j+1, where j is the radial quantum number
related to the bundle of the subbands governing the corre-
sponding superconducting resonance in the regular regime.
The distance between two neighboring maxima is close to
�F /2 with �F=2
� / �2meEF�1/2 the three-dimensional �3D�
Fermi wavelength for our effective Fermi level. Note that a
superconducting resonance appears exactly at the point
where the relevant bundle of single-electron subbands
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touches the Fermi surface. As the number of the local
maxima in ���� increases by one from a resonant to the next
one, we can expect that the difference in d for two neighbor-
ing resonances is also �F /2. Recall that for d=1–3 nm EF is
systematically shifted up from 0.9 eV with a decrease in d
�see the discussion in the last paragraph of Sec. II A�. De-
pendence of EF on R is almost negligible.

Notice that, as seen from Eq. �19�, the resonant enhance-
ments of superconducting properties depend on the interac-
tion matrix elements Jj�m�,jm. So, a minor disorder, e.g., due
to disordered interface between the sample and substrate or
due to surface roughness, is expected to smoothen the
quantum-size oscillations through the above matrix
elements.38 Another point is that such a disorder can also
influence the mean density of single-electron states in the
Debye window through a broadening of the transverse elec-
tron levels. In particular, this can somewhat shift supercon-
ducting resonances, violating the regular pattern at large R.
The broadening should exceed the intersubband spacing �sub
in order to completely destroy the formation of distinguished
single-electron subbands. Note that tunneling experiments
with single-crystalline Pb nanofilms demonstrate clear signa-
tures of the formation of well distinguished transverse elec-
tron levels.4,6,9

C. Andreev-type states induced by radial quantum
confinement

As seen from Figs. 1–3, the formation of multiple single-
electron subbands results in significant modifications of the
spatial distribution of the superconducting condensate and in
quantum-size oscillations �both regular and strongly irregu-
lar� of basic superconducting properties. Another interesting
consequence of the appearance of multiple subbands is the
multigap structure of the quasiparticle excitations. As fol-
lows from Eq. �16�, each single-electron subband is specified
by � jm, the energy gap of excitations in a given subband.
Based on Eqs. �6�, �14�, and �16�, this quantity can be rep-
resented as

� jm =� d3r�ujmk
� �r���r�ujmk�r� + v jmk

� �r���r�v jmk�r�� ,

�23�

i.e., � jm is the average value of the order parameter as “seen”
by quasiparticles in the corresponding single-electron sub-
band. If the order parameter is uniform �e.g., in bulk�, � jm
does not depend on the relevant quantum numbers because
of the normalization condition,32 i.e., �d3r��ujmk�r��2
+ �v jmk�r��2�=1. In the presence of quantum confinement the
superconducting order parameter is always position depen-
dent due to a broken translational symmetry and, so, we
obtain energy gaps sensitive to the quantum numbers, i.e.,
the multigap case. From Eq. �23� it follows that when qua-
siparticles are successive in avoiding local enhancements in
��r�, they are specified by smaller � jm’s and, so, by gener-
ally lower energies: to some extent a spatial variation in the
superconducting order parameter appears to be analogous to
a potential well for quasiparticles. This is the basis of the

well-known Andreev reflection �see, e.g., Refs. 25 and 39�
which we refer to as Andreev mechanism. Its interplay with
quantum confinement is illustrated by Fig. 4 for R=0.5 nm
and d=1.1 nm �the point of a superconducting resonance�.
Here panels �a� and �b� show the order parameter and the
radial distribution of quasiparticles ujmk

2 ���+v jmk
2 ���=� jm

2 ���
�the latter does not depend on k in Anderson’s approxima-
tion�. There are eight relevant subbands making a contribu-
tion to the superconducting characteristics at the chosen geo-
metrical parameters: �j ,m�= �0,0�-�0, �5� and
�1,0�-�1, �1�. The bottom of the single-electron subband
with �j ,m�= �1, �1� is situated in the vicinity of the Fermi
surface and, so, it makes a major contribution to ���� due to
an enhanced density of states. This is the subband that con-
trols the resonant enhancement at R=0.5 nm and d
=1.1 nm �resonant subband� and determines the correspond-
ing radial profile of the order parameter with the two local
maxima �compare with the radial distribution of quasiparti-
cles �1, �1� in panel �b��. Other subbands play a less impor-
tant role at this superconducting resonance. The most signifi-
cant contribution among them is due to the states with
�j ,m�= �1,0�. As these states have practically the same radial
distribution as those with �j ,m�= �1, �1� �the curves for
�1, �1� and �1,0� in Fig. 4�b� are almost indistinguishable�,
then, based on Eq. �23�, one can expect that �1,0 should be
nearly the same as �1,�1. This expectation agrees with our
numerical results given in Fig. 4�c�. Here the quasiparticle
energy Ejmk is plotted versus the positive values of k and, as
seen, each single-electron subband is specified by its own
quasiparticle branch whose minimum energy gives the sub-
band superconducting gap.
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By virtue of the definition of j �the number of nodes in the
radial direction�, the spatial distribution of quasiparticles
with j=0 is characterized by one maximum �see panel �b��
located next to the point of a local minimum of ���� at �
�1.05 nm. Therefore, � jm is generally lower for j=0 �see
Fig. 4�c�� and, so, quasiparticles with �j ,m�= �0,0�-�0, �5�
can be interpreted as Andreev-type states induced by the ra-
dial quantum confinement. The total energy gap in the qua-
siparticle spectrum �E is determined by the lowest subband-
dependent gap, i.e., �E=�0,�5, see panel �c�. Due to a
relatively small density of states, such Andreev-type quasi-
particles produce only a minor contribution to the basic su-
perconducting characteristics, e.g., the critical temperature.
However, they control the low-lying energy excitations in a
superconductor. This is illustrated by Fig. 4�d�, where the
ratio of �E to Tc is shown as function of temperature. Sub-
band �0, �5� has the lowest energy gap and determines �E
but does not make a significant contribution to Tc. The latter
is controlled by the resonant subband �1, �1� with the
higher-energy gap. This is why the ratio �E /kBTc is de-
creased as compared to bulk. As seen from panel �d�, such a
decrease is about 10%. This is by a factor of 2 smaller than
the reduction in �E /kBTc due to similar Andreev-type states
in a cylindrical nanowire with radii 1–2 nm.25 The point is
that the superconducting condensate in a hollow nanocylin-
der exhibits generally more uniform spatial patterns, which
results in a less profound difference between subband-
dependent gaps. The centrifugal energy appears to be a sig-
nificant contributor to a nonuniform distribution of the pair
condensate and the role of this term is reduced due to the
annulus in a hollow nanocylinder. This is the reason why the
Andreev-type states play a more important role with decreas-
ing R. This is seen from Fig. 5 that shows the same data as in
Fig. 4 but for R=0.2 nm and d=1.1 nm, i.e., for nearly the
same thickness as previously but for a significantly smaller

inner radius. The superconducting resonance illustrated by
Fig. 5 is governed by the single-electron subband with
�j ,m�= �0, �4� and, as seen, the maximum of ���� is lo-
cated at the same point as the maximum of the radial quasi-
particle distribution for �j ,m�= �0, �4�. In addition to states
�0, �4�, there are five more single-electron subbands mak-
ing a minor contribution to the superconducting characteris-
tics. Four of them are specified by j=0 and, so, spatial dis-
tributions of the corresponding quasiparticles are close to
that of the resonant subband. So, there is a minor difference
between � jm’s with j=0. However, it is clearly seen that � jm
�with j=0� is slightly diminished when decreasing �m�. The
reason is that the maximum of the quasiparticle distribution
for the states with j=0 is shifted to smaller � with decreasing
�m�. It means that the value of the corresponding integral in
Eq. �23� is reduced. One more relevant single-electron sub-
band is �j ,m�= �1,0�. The radial distribution of the quasipar-
ticles in this subband has two local maxima and the most
significant of them is located far to the left from the maxi-
mum of ����. As a result, we obtain a significant drop of �1,0
as compared to the energy gap of the resonant subband, i.e.,
�0,�4. Such a drop leads to a significant decrease �now it is
about 20%� in the ratio �E /kBTc, where �E=�1,0 and Tc is
controlled by the states with �j ,m�= �0, �4� �notice the rea-
sonable estimate kBTc�1.76�0,�4�.

For nonresonant sets of R and d, when the bottoms of all
relevant subbands are far below the Fermi level, the order
parameter �and Tc� is not enhanced as compared to bulk and
exhibits, as a rule, a more uniform spatial distribution. In this
case the Andreev mechanism plays a less important role and
the ratio �E /kBTc is close to its bulk value. However, devia-
tions from bulk can still be significant, see Ref. 25 and, so,
this effect of Andreev-type states induced by quantum con-
finement can be observed even in the presence of fluctuations
of the transverse dimensions R and d when all the results
should be averaged over relevant intervals of their variations.
Interplay of the Andreev mechanism and quantum confine-
ment in nanoscale superconductors can be probed experi-
mentally by means of simultaneous measurements of Tc and
�E. So, it is interesting to have an idea about how the qua-
siparticle density of states measured in tunneling experi-
ments is modified by quantum confinement. The dependence
of this density of states on the quasiparticle energy E �in
units of �bulk� is illustrated for a hollow nanocylinder by Fig.
6 for: �a� R=0.5 nm and d=1.1 nm; �b� R=2.0 nm and d
=1.1 nm; and �c� R=1.0 nm and d=1.77 nm �all sets are
resonant points�. In addition, panel �d� shows the quasiparti-
cle energy Ejmk versus k�0 for the latter set of R and d.
Multiple peaks �more precisely, multiple square-root type of
divergences� in the quasiparticle density of states �in units of
N�0�, the bulk normal density of states� reflects the formation
of the multigap structure. In particular, in panel �a� we can
see a significant peak at E�13.2�bulk and two less important
peaks at E /�bulk=11 and 11.5. The major peak is due to the
contribution of quasiparticles from the resonant single-
electron subband with �j ,m�= �1, �1� �see Fig. 4�c��. Two
small peaks shifted towards smaller energies are due to
Andreev-type states induced by the radial quantum confine-
ment, i.e., E=11.5�bulk comes from �j ,m�= �1,0� and E
=11�bulk is from �j ,m�= �0, �3�-�0, �5�. There are addi-
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tional divergences in the quasiparticle density of states at E
=12–13 meV. They are associated with the single-electron
subbands �0,0�-�0, �2�. The corresponding peaks in panel
�a� are thin and practically invisible.

A similar picture occurs for R=2.0 nm and d=1.1 nm.
As seen from Fig. 6�b�, we again obtain one major peak due
to the resonant subband labeled now by �j ,m�= �0, �13� �at
E /�bulk=9.6�. In addition, there are two less pronounced
peaks: at E /�bulk=7 due to the subbands �1,0�-�1, �2� and
at E /�bulk=7.6 from subbands �0, �2� , �0, �7� and
�0, �9�-�0, �12�. Peaks from other subbands almost disap-
pear.

For more specific information, Fig. 6�c� shows all peaks
in the quasiparticle density of states, both significant and
secondary in importance, at a more detailed energy scale for
R=1.0 nm and d=1.77 nm. For convenience, panel �d�
demonstrates Ejmk as function of k for the same parameters.
These parameters correspond to a superconducting resonance
induced by the single-electron subband with �j ,m�
= �1, �7� that makes a major contribution to the basic super-
conducting quantities and is specified by the subband gap
�1,�7=6.35�bulk �see panel �d��. As a result, we have a pro-
found major peak at E /�bulk=6.3 in Fig. 6�c�. It is seen from
Fig. 6�d� that there is also a subband with �j ,m�= �1, �6�
which is characterized by nearly the same superconducting
gap, i.e., �1,�6��1,�7. However, its contribution to the den-
sity of states is much less significant. The second important
peak is situated at E /�bulk=5.7, which is the energy gap for
subbands �2,0� and �2, �1�: �2,0=�2,�1=5.7�bulk. The third
pronounced peak in Fig. 6�c� forms due to two divergences
in the density of states due to the subbands �0, �9� and
�0, �10�. Here �0,�9��0,�10=5.3�bulk, see Fig. 6�d�. In ad-
dition, one can see clear signatures of less important diver-
gences in Fig. 6�c�. In particular, between the two significant
peaks located at E /�bulk=5.7 and E /�bulk=6.3, there are a
series of peaks coming from the subbands with �j ,m�
= �1,0�-�1, �6� �the larger the absolute value of the azi-
muthal quantum number the smaller the corresponding sub-
band energy gap�. In turn, the subbands �0,0�-�0, �8� are
responsible for a series of peaks in the energy domain
E /�bulk=5.3–5.7.

As mentioned above, the formation of Andreev-type states
induced by quantum confinement is related to a spatially
nonuniform distribution of the pair condensate. In the regime
of irregular quantum-size oscillations �see Sec. III B�, i.e.,

for sufficiently small R, the order parameter exhibits pro-
nounced spatial variations, which results in a significant role
of the Andreev mechanism. When increasing R, we pass to
the regime of regular quantum-size oscillations because
single-electron subbands with different absolute values of the
azimuthal quantum number are almost degenerate for large
enough R and form bundles. In this case the spatial variations
in ���� become less and less pronounced and, as a result, the
multigap structure disappears. In particular, Figs. 7�a� and
7�b� show the quasiparticle density of states and the quasi-
particle energy as function of k for R=15 nm and d
=1.09 nm. This is the point of a superconducting resonance
induced by a bundle of single-electron subbands with j=1.
The states with �j ,m�= �1,0�-�1, �14� makes a contribution
to the superconducting characteristics of about 60% here.
The rest is due to the subbands �0,0�-�0, �79�. As seen
from Fig. 7�b�, the quasiparticle branches with �j ,m�
= �0, �7� are almost degenerate. However, branches with j
=1, �m��7 are still well distinguished. Andreev mechanism
is of no importance any more and, so, the subband energy
gaps do practically not depend on the quantum numbers:
� jm=6�bulk for �j ,m�= �1,0�-�1, �14� and �0,0�-�0, �78�.
Therefore, we can see a profound peak in the quasiparticle
density of states at E /�bulk=6. There are two additional sub-
bands �0, �79� and �1, �15� that contribute to the super-
conducting quantities. As follows from Fig. 7�b�, the spec-
troscopic gaps for these states are 13.5�bulk and 18�bulk with
the corresponding peaks in Fig. 7�a�. These spectroscopic
gaps are not directly related to �0,�79 and �1,�15 because the
bottoms of both subbands are located above the Fermi level
�but in the Debye window�. It means that � jmk is different
from zero at the point of the minimum of the corresponding
quasiparticle energy Ejmk taken as function of k �see Eq.
�16��. Hence, the above spectroscopic gaps are shifted up by
a nonzero single-electron energy. It is interesting that �0,�79
and �1,�15 are smaller than 6�bulk. However, this does not
have any effect on the ratio of �E to kBTc: these subbands
produce a negligible contribution to the superconducting
characteristics due to the large corresponding spectroscopic
gaps. In Fig. 7�c� one can see another example of the energy
dependence of the quasiparticle density of states. Thus, as
seen, the multigap structure is almost degenerate in the regu-
lar regime and Andreev-type states do not play such essential
role as for smaller inner radii, i.e., in the case of irregular
quantum-size oscillations.
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Concluding this section, we note that the radial profile of
the superconducting order parameter is mainly determined
by single-electron subbands with the bottoms close to the
Fermi surface. These subbands are characterized by slow
motion of electrons in the direction parallel to the nanocyl-
inder �here the major part of the corresponding single-
electron energy comes from the radial and azimuthal degrees
of freedom�. In particular, typical longitudinal wavelengths
for electrons in a resonant subband are about 20 nm��F.
Propagation of such long waves is not sensitive to the sur-
face imperfections with the characteristic size of the order of
the metallic unit-cell dimensions. Thus, the profile of the
order parameter and, so, the formation of Andreev states in-
duced by quantum confinement will be stable against surface
roughness.

IV. CONCLUSIONS AND DISCUSSIONS

By numerically solving the BdG equations, we have in-
vestigated how quantum confinement modifies superconduc-
tivity in a hollow metallic nanocylinder. The radial quantiza-
tion of the electron motion results in a splitting of the
conduction band into a series of subbands whose lower edges
move in energy when changing the inner radius R and thick-
ness d. Such a multisubband structure leads to pronounced
quantum-size superconducting oscillations, e.g., the super-
conducting properties varies with d at a fixed R. We have
found that the character of these variations changes qualita-
tively with an increase in R: the irregular pattern is replaced
by almost equidistant superconducting resonant enhance-
ments. The reason for such a crossover is the change in the
role of the centrifugal energy. When R increases, this energy
is diminished so that single-electron subbands with different
absolute values of the azimuthal quantum number m �but
with the same radial quantum number j� are nearly degener-
ate in energy. As a result, they form bundles of subbands
responsible for equidistant resonant enhancements in the ba-
sic superconducting quantities as functions of d. We have
shown that the formation of subbands can result in multiple
superconducting gaps due to the interplay between quantum
confinement and the Andreev mechanism. The difference be-

tween the subband-dependent superconducting gaps is sig-
nificant in the irregular regime but they are almost equal
when coming to the regular side of the crossover. Here the
ratio of the critical temperature to the energy gap approaches
its bulk value while it is reduced by 20–30 % due to
Andreev-type states in the irregular regime. The role of
Andreev-type states induced by quantum confinement is sig-
nificant for small inner radii but becomes minor in the regu-
lar domain.

We would like to remark that fluctuations are known to
play a more serious role for lower dimensionality. So, one
can expect deviations from the mean-field results for nano-
scale superconducting systems. However, a recent experi-
mental study of Pb superconducting single-crystalline nano-
films showed a good agreement with the mean-field results
even for film thicknesses down to 2–5 monolayers �0.5–1.0
nm�.9 For superconducting nanowires it is believed16 that
quantum-phase fluctuations suppress the superconducting
state for diameters below 5–8 nm. This expectation is in
agreement with the experimental results of Ref. 14, where a
crossover from the superconducting to normal state was re-
ported for an aluminum nanowire with a diameter of about 8
nm. However, results of another group15 demonstrate no sig-
nature of such a crossover in aluminum nanowires with di-
ameters 5–6 nm. Thus, based on the above experimental
data, we may expect that the mean-field approach is reason-
able for hollow nanocylinder when d�1 nm and R+d
�2–3 nm, with R+d the total radius of the hollow cylinder.
In addition, we remark that the existing treatment of super-
conducting fluctuations is questionable in the presence of
multiple single-electron subbands in nanowires/nanofilms.
Due to scattering of electrons between different subbands,
this has nothing to do with the one-dimensional/two-
dimensional limit and, so, the superconducting fluctuations,
both quantum and thermal, will be different. Thus, one can
expect that when the number of the relevant single-electron
subbands is significantly larger than one, the 3D case is be-
ing approached and the mean-field approximation is justified.
However, even when only a small number of subbands is
occupied, the mean-field approximation can still yield rea-
sonable results like in Pb and In single-crystalline one-
atomic-layer thick films40 with only one relevant single-
electron subband.
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FIG. 7. �Color online� Hollow nanocylinder in the regular regime: �a� the quasiparticle density of states versus the energy E at R
=15 nm and d=1.09 nm; �b� Ejmk as function of k �in the interval k=0–2 nm−1� for the relevant single-electron subbands with �j ,m�
= �0,0�-�0, �79� and �1,0�-�1, �15�; and �c� the density of states versus the quasiparticle energy E for R=15 nm and d=3.1 nm.
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We also note that some smearing of the spatial profile of
the order parameter can be expected when including the
nonlocal-gap operator in the BdG equations. More specifi-
cally, using a nonlocal-gap representation of the BdG equa-
tions, one simply avoids the delta-function approximation of
the pair interaction in favor of a more detailed potential.
Then, when solving Anderson’s BCS-type equation �see Eq.
�19��, the only difference is that new interaction-matrix ele-
ments Jj�m�,jm will appear in the problem. While resonant
enhancements can be sensitive to the interaction-matrix ele-
ments, this is not the case for the radial profile of the order
parameter that is governed by quantum confinement. Indeed,
the main contribution to the order parameter at a resonant
point comes from the single-electron subband whose bottom
is in the vicinity of the Fermi surface. It means that, by virtue
of Eq. �14�, the radial profile of the order parameter is deter-
mined by the radial single-electron wave function associated
with the above subband. Hence, the spatial profile of the
order parameter will change only if the relevant single-
electron wave functions will be different. However, such a
difference will not be pronounced because the electron-
electron interaction itself has almost no effect on the wave
functions in superconducting nanowires/nanofilms. From the
numerical results of Ref. 41, this effect is estimated to be
within a few percent. In other words, the order parameter is
directly related to the Cooper-pair wave function and a wave
function of two particles in a quantum-confining geometry is
much more sensitive to tight confinement than to details of
the interparticle interaction. Generally, the strength of quan-
tum confinement in nanowires/nanofilms can be specified by
the dimensionless parameter �sub /�bulk: when it is larger than
one, quantum-confinement effects predominate. For nano-
wires �sub� �2

2me


2

R2 with R the nanowire radius �we note that
for a hollow nanocylinder R is a complicated function of R
and d�. Typical values for the energy gap in bulk metallic
superconductors are �bulk=0.1–1.5 meV �see, e.g., Ref. 16�.
This allows one to find that �sub /�bulk�1 when R
�20–80 nm. In particular, for aluminum this leads to R
�40 nm.

It is also of interest to discuss the possible effect of sur-
face imperfections on the superconducting resonances in
quantum nanowires. Surface roughness can influence both
the longitudinal and transverse motion of electrons. As dis-
cussed above, the basic characteristics of the system at the

point of a superconducting resonance are controlled by the
corresponding resonant single-electron subband whose bot-
tom is situated in the vicinity of the Fermi level. In such a
subband the main contribution to the single-electron energy
comes from the transverse motion and, so, the longitudinal
motion of electrons is slow. In particular, from Fig. 4 we
learn that the resonant subband at R=0.5 nm and d
=1.1 nm is specified by �j ,m�= �1, �1�, and the corre-
sponding subband-dependent longitudinal Fermi wave num-
ber is about 0.2–0.3 nm−1. Similar values for the longitudi-
nal Fermi wave number in the resonant subband with
�j ,m�= �0, �4� can be found from Fig. 5 for R=0.2 nm and
d=1.3 nm. In general, the characteristic longitudinal wave-
lengths of electrons in a resonant subband are larger than
15–30 nm. Propagation of such long waves will not be sen-
sitive to surface imperfections with characteristic sizes of
about the dimensions of the metallic unit cell. Another pos-
sible effect of surface roughness is a broadening of the trans-
verse electron levels and, consequently, a smearing of the
lower edge of a single-electron subband. This will lead to an
uncertainty in the intersubband energy spacing and, so, one
can expect that when this uncertainty is close to or larger
than the Debye energy �	D, an effect of such a smearing on
quantum-size oscillations of basic superconducting proper-
ties can be pronounced. The uncertainty in the intersubband
energy spacing for nanowires is estimated as ��sub

= 
2�2

meR3 �R with �R the characteristic length of the radius fluc-
tuations. Taking �R=0.3 nm we can obtain that ��sub
=30 meV for R=2 nm whereas ��sub=8 meV for R
=3 nm. The Debye energy for aluminum is about 32 meV,
see discussion in the last paragraph of Sec. II A. Hence,
smearing for quantum-size oscillations of the basic supercon-
ducting quantities due to surface roughness can be expected
for aluminum nanowires with radii less than 2 nm. Thus, in a
hollow nanocylinder such a smearing can be of relevance for
R+d�2 nm.
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